| | | |
N NS SN\

S\ /\/ﬁ/ﬁ/w W
\/ ~ /\I/ I/\I \I/\

N N7 e
COMP4161: Advanced Topics in Software Verification I I I

— “ 7

Gerwin Klein, June Andronick, Ramana Kumar, Miki Tanaka 7N

52/2017
databl.csiro.au %

Last time... DATA
@

A calculus syntax

free variables, substitution

[reduction

« and n conversion

[reduction is confluent

A calculus is expressive (turing complete)

+4di il

A calculus is inconsistent (as a logic)

2 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Content DATA
) %

=» Intro & motivation, getting started

=» Foundations & Principles

e Lambda Calculus, natural deduction [1,2]
o Higher Order Logic [37]
e Term rewriting [4]

=» Proof & Specification Techniques

e Inductively defined sets, rule induction [5]
e Datatypes, recursion, induction [6, 7]
e Hoare logic, proofs about programs, C verification [8°,9]
o (mid-semester break)

e Writing Automated Proof Methods [10]
o lsar, codegen, typeclasses, locales [11°,12]

23l due; Pa2 due; a3 due

3 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

A calculus is inconsistent DATA | %

Can find term R such that R R =3 not(R R)

There are more terms that do not make sense:
12, true false, etc.

Solution: rule out ill-formed terms by using types.
(Church 1940)

4 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Introducing types

IIIATA | %

Idea: assign a type to each “sensible” A term.
Examples:

=» for termt has type o write t:«

=» if x has type o then Ax. x is a function from « to «
Write: (Ax. x) ta =«

=» for st to besensible:
s must be a function
t must be right type for parameter

Ifs:a=fandt: «athen(st):p

5 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

| | | | | | |
NN\ AN N NN

DATA %l
\I/ IA\N\N S\ S /\/\/\/
I NSNS\ \/\I/\I/ /\I \/\/\/\/

S IANNSN NSNS I\ D

ISNN NN N\

Syntax for A~ DATA | P

Terms: t == v | ¢ | (tt) | (Ax. t)
v,xeV, ceC, V,C setsof names

Types: 7 = b | v | T =7
b € {bool, int,...} base types

ve{a,p,...} type variables
a=f=y = a=(f=7)

Context I':
I": function from variable and constant names to types.

Term t has type 7 in context [': M=tor

8 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Examples DATA
@

N =(x. x)ta=a

[y < int] F y :: int

[z < bool] F (Ay. y) z :: bool
[FAMx fx:(a=p)=a=0

A term t is well typed or type correct
if there are [and 7 such that Tt :: 7

9 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Type Checking Rules DATA | D

Variables: r I— X r(X)
. . lFtom=7 TEbom
Application: MF (6 6) s
r |t
Abstraction: 7 T

NE(Ax. t) =71

10 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Example Type Derivation: DATA | %

[x <+ a,y+flFx:a
[x—a]FAy.xu =«
[FXxy. xta=0=a«a

11 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

More complex Example DATA | %

lFfra=(a=p) Nxta
r-fx:a=24 N-x:a
l-fxx:p
[fa=a=0lFXx.fxx:a=p
[FMx fxx:(a=a=p)=>a=p0

N=[f+a=a=0,x+q

12 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

More general Types DATA
@

A term can have more than one type.

Example: [|F Ax. x :: bool = bool
[FXx. xta=a

Some types are more general than others:

7 S o if there is a substitution S such that 7= S(o)

Examples:

int =>bool < a=pf < f=>a £ a=a«a

~ ~

13 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Most general Types DATA
@

Fact: each type correct term has a most general type

Formally:
r-tzr = 3Jo.TktioANMI. Tt =o' <o)

It can be found by executing the typing rules backwards.

=» type checking: checking if '+t :: 7 for given [and 7
=» type inference: computing I' and 7 such that '+t :: 7

Type checking and type inference on A\~ are decidable.

14 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

What about 5 reduction? DATA | %

Definition of [reduction stays the same.

Fact: Well typed terms stay well typed during 3 reduction
Formally: lEsaT ANs—pgt=TkFtur

This property is called subject reduction

15 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

What about termination? DATA | %

[reduction in A\~ always terminates.

(Alan Turing, 1942)

=» =3 is decidable
To decide if s =g t, reduce s and t to normal form (always exists,
because —3 terminates), and compare result.

= =.3, is decidable
This is why Isabelle can automatically reduce each term to 57
normal form.

16 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

What does this mean for
) DATA | %
Expressiveness?

Not all computable functions can be expressed in \ ™!

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct
A7 termusing Y i (1= 7) = 7 with Y t —35 t (Y t) as only
constant.

=» Y is called fix point operator

=» used for recursion

=» lose decidability (what does Y (Ax. x) reduce to?)

(Isabelle/HOL doesn’t have Y'; it supports more restricted forms of

17 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Types and Terms in Isabelle

Types:

Terms:

T o=b | v |wv:C|T=71] (..

b € {bool,int,...} base types
ve{a,p,...} type variables

K € {set,list,...} type constructors
C € {order,linord,...} type classes

t = v | c| v | (tt)]| (A t)
v,x eV, ceC, V,C setsof names

DATA | %

.,T)K

=» type constructors: construct a new type out of a parameter type.
Example: int list

=» type classes: restrict type variables to a class defined by axioms.
Example: « :: order

=» schematic variables: variables that can be instantiated.

18 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Type Classes DATA
@

=» similar to Haskell's type classes, but with semantic properties

class order =
assumes order_refl: "x < x”
assumes order_trans: "[x <y;y <z] = x < "

=» theorems can be proved in the abstract
lemma order_less_trans:
"Ax:atorder. [x<yy<z]=x<Z2"
=» can be used for subtyping

class linorder = order +
assumes linorder_linear: "x <y Vy < x"
=» can be instantiated

instance nat :: " {order, linorder}" by ...

19 | COMP4161 | © Data61, CSIRO: provided under Creative Commons Attribution License

Schematic Variables DATA | %

XY
XAY

=» X and Y must be instantiated to apply the rule

But: lemma “x+0=0+ x"

=>» x is free
=» convention: lemma must be true for all x
=» during the proof, x must not be instantiated

Solution:
Isabelle has free (x), bound (x), and schematic (7X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

20 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Higher Order Unification | “DATh | @

Unification:
Find substitution o on variables for terms s, t such that

o(s) = o(t)

In Isabelle:
Find substitution o on schematic variables such that
o(s) =apn o(t)
Examples:
IXATY =48y XAX [?X < x,?7Y + Xx]
P x =afy XNAX [?P + Ax. x A x]

P(?f x) =asy; 7Y x [?f < Ax. x,?Y + P]

Higher Order: schematic variables can be functions.

21 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

Higher Order Unification DATA | @

=» Unification modulo a8 (Higher Order Unification) is semi-decidable
=» Unification modulo afn is undecidable
=» Higher Order Unification has possibly infinitely many solutions

But:
=» Most cases are well-behaved
=» Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
=» is a term in 8 normal form where

=» each occurrence of a schematic variable is of the form ?f t; ... t,

=» and the t; ... t, are n-convertible into n distinct bound variables

22 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

We have learned so far... DATA | %

=>» Simply typed lambda calculus: A~

=» Typing rules for A7, type variables, type contexts
=» [-reduction in A7 satisfies subject reduction

=» B-reduction in A7 always terminates

=» Types and terms in Isabelle

23 | COMP4161 | (© Data61, CSIRO: provided under Creative Commons Attribution License

